

To explain the difference between INSTANTANEOUS SPEED and AVERAGE SPEED, we can consider a car journey. The instantaneous speed is continually changing and this is indicated by the speedometer reading. The average speed is calculated by dividing the distance travelled by the time taken. Measuring Speed in the Laboratory - Using One Light Gate The timer starts when the leading edge of the card breaks the light beam and it stops when the trailing edge passes through The computer calculates the speed directly by dividing the card length by the time taken for it to go through the light gate. - Using a Ticker-Timer The ticker-timer marks dots on the tape at intervals of $1 / 50 \mathrm{~s}(0.02 \mathrm{~s})$ and the dot pattern on the tape acts as a record of the trolley's motion. Even dot spacing = constant speed. Increasing dot spacing $=$ increasing Speed. Decreasing dot spacing $=$ decreasing speed. The distance moved by the trolley every second can be obtained by measuring the distance of every fifth dot from the start of the tape. This gives the trolley's distance at intervals of 0.1 s . A results table can then be drawn up and a distance against time graph can be plotted. The gradient of such a graph gives the speed of the trolley.				The rate of change of displacement of a body. - Is a VECTOR quantity, so its value may be positive or negative depending on the direction of motion. - A body moves with CONSTANT (or UNIFORM) velocity if it goes through equal changes in displacement in equal time intervals. A body moving with non-constant velocity is said to be undergoing acceleration. ACCELERATION (a) / metre per second ${ }^{2}\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ The rate of change of velocity of a body. $\begin{aligned} \text { ACCELERATION } & =\frac{\text { VELOCITY CHANGE }}{\text { TIME TAKEN }}\left(\mathrm{m}^{(\mathrm{s})} \mathrm{s}^{-1}\right) \\ v & =\frac{\Delta v}{\Delta t} \end{aligned}$			

UNIT G481	Module 1	1.1 .3	KINEMATICS
- It is aVECTOR quantity so its value may be positive or negative.			
- A body is said to be accelerating if:			
- Its speed changes, or			
- Its direction changes.			
So an object which is moving in a circular path at constant speed is accelerating because its direction is continually changing.			

1 (a) Calculate the average speed of an Olympic sprinter whose time for the 100 m sprint is 9.91 s .
(b) How far will a snail crawl in 1.5 minutes, if its average speed is $1.5 \mathrm{~mm} \mathrm{~s}^{-1}$?
(c) A trolley with a 10 cm long card passed through a light gate. If the time recorded by the digital timer was 0.5 s , calculate the average speed of the trolley in $m s^{-1}$.
(d)

The diagram above shows two ticker-tapes (a) and (b). Describe the motion of the trolleys which produced these tapes.

2 A fishing trawler uses echo sounding to measure the depth of water beneath its keel. If the reflected ultrasonic waves are detected $0.65 s$ after they are transmitted, calculate the depth of the water. (speed of sound in water $=1500 \mathrm{~m} \mathrm{~s}^{-1}$)

3 (a) The Earth completes one full revolution about its axis in 24 hours. If the Earth's radius is 6400 km , calculate its rotational speed.
(b) The Earth takes 365.3 days to make one complete orbit of the Sun. Given that the average orbital radius is $1.5 \times 10^{11} \mathrm{~m}$, Sun. Given that the average orbital radius is $1.5 \times 10^{11} \mathrm{~m}$,
calculate its average orbital speed in (i) $\mathrm{km} \mathrm{h}^{-1}$, (ii) $\mathrm{m} \mathrm{s}^{-1}$.

Explain why this is its average speed and not its velocity.
(e.g. a body falling under gravity in a vacuum moves with a constant acceleration of $9.81 \mathrm{~m} \mathrm{~s}^{-2}$)
acceleration $=$ velocity change $/$ time acceleration $=$ final velocity-initial velocity

- A body moves with CONSTANT (or UNIFORM) acceleration if it goes through equal velocity changes in equal time intervals.

Time taken

UNIT G481	Module 1
- PRACTICE QUESTIONS (3)	

1 The v/t graph opposite shows how a car's velocity changed with time. At X, the driver started to slow down as he approached traffic lights. Use the graph to calculate:
(a) The car's deceleration.

(b) The total distance travelled by the car.

2 The graph opposite shows how the velocity of a train varied with time as it moved along a straight track over a 50 minute period after leaving the station.

(a) (i) Describe how the displacement of the train from the station changed with time.
(ii) Sketch a graph to show how the displacement in part (i) varied with time.
(b) (i) Calculate how far from the station the train was after 50 min .
(ii) Calculate the total distance travelled by the train in this time.
(a) Define acceleration.
(b) The graph below shows the variation of velocity (v), with time (t), of a train as it travels from one station to the next.

Use the graph to calculate:
(i) The acceleration of the train during the first 10.0 s ,
(ii) The distance between the two stations. (OCR Physics AS - Module 2821 - June 2001)

4 The diagram opposite shows a graph of velocity against time for a train that stops at a station.
(a) For the time interval $t=40 \mathrm{~s}$ to $t=100 \mathrm{~s}$, calculate:

(i) The acceleration of the train,
(ii) The distance travelled by the train.
(b) Calculate the distance travelled by the train during its acceleration from rest to $25 \mathrm{~m} \mathrm{~s}^{-1}$.
(c) Calculate the journey time that would be saved if the train did not stop at the station, but continued at a constant speed of $25 \mathrm{~m} \mathrm{~s}^{-1}$. (OCR Physics AS - Module 2821 - January 2001)

